(a) The velocity of the first ball before the collision with the second ball is 11.18 m/s.
(b) The final velocity of the two balls after the collision is determined as 5.59 m/s.
<h3>
Speed of the block when pushed by the spring</h3>
The speed of the block when pushed by the spring is calculated as follows;
K.E = Ux
¹/₂mv² = ¹/₂kx²
mv² = kx²
v² = kx²/m
v² = (25 x 0.5²)/0.05
v² = 125
v = 11.18 m/s
<h3>Final velocity of the two balls after the collision</h3>
The velocity of the two balls after the collision is calculated as follows;
Pi = Pf
where;
- Pi is initial momentum
- Pf is final momentum
m1u1 + m2u2 = v(m1 + m2)
0.05(11.18) + 0.05(0) = v(0.05 + 0.05)
0.559 = 0.1v
v = 5.59 m/s
Learn more about velocity here: brainly.com/question/4931057
#SPJ1
Answer:
The final velocity is 28.14 m/s
Yes the angle of projection matters
Explanation:
Given;
initial velocity of the water balloon, u = 20 m/s
height of the building, h = 20 m
let the final speed of the ball when it hits the ground = v
The final speed is calculated as follows;
v² = u² + 2gh
v² = (20)² + 2(9.8)(20)
v² = 400 + 392
v² = 792
v = √792
v = 28.14 m/s
Yes the angle matters, if the balloon had been dropped at a certain angle, the final velocity would have been estimated using the following formula;
where;
θ is the angle of projection, which accounts for the vertical component of the velocity.
The separation in time between the arrival of primary and secondary wave is called LAG TIME.
The time difference between the arrival of primary wave and secondary wave in a seismogram is called lag time. The primary wave always travels faster than the secondary wave, thus the difference between the two can be obtained by estimating the difference between the arrival time of the two waves/.
Answer:
4 m/s^2
Explanation:
The acceleration is defined as: Δv/Δt (the difference of the velocity over a time period in which happens that difference).
Remember that a difference is calculated by subtracting the initial value of a physical quantity from its final value.
In our case:
Δv = Vfinal - Vinitial = 36m/s - 0 m/s = 36m/s
Δt = 9s
a = Δv/Δt = 36m/s / 9s = 4m/s^2
The equation of the graph is
Force = (mass) x (acceleration) .
The graph is a straight line that passes through the origin,
and its slope is the mass of the object being studied.