The volume of the gas at a temperature of 405.0 K would be 607.5 mL. Making option D the right answer to the question.
What is the volume of the gas?
To find the volume of the gas, the equation to be used would have to be combine gas law.
Combine gas law as the name suggest uses the combination of Charles law which measures Volume against temperature, and Gay-Lussac's law which measures Pressure/Temperature, and Boyle's law which measures pressure X volume where k is constant.
Using the combine law to find the volume, we have:
P₁V₁/T₁=P₂V₂/T₂
Where P₁ = initial pressure
V₁ = initial volume
T₁ = initial temperature
P₂ = final pressure
V₂ = final volume
T₂ = final temperature
P₁ = 2.25atm
V₁ = 450.0 mL
T₁ = 300 K
T₂ = 405.0 K
V₂ = ?
D) 607.5 mL
= [2.25(450)]÷300=[2.25(V₂]÷405
Making V₂ the subject
3.375=2.25 V₂ ÷ 405
V₂ = 3.375 x 405 ÷ 2.25
V₂ = 607.5 mL
In summary, a gas with an initial pressure of 2.25atm, an initial pressure of 450.0 mL and an initial temperature of 300 K would have a final volume of 607.5 mL if the temperature is increased to 405.0 K.
Learn more about Combine gas law here: brainly.com/question/13538773
#SPJ1
"Atoms have an equal proton and neutron charge."
A. deposition
this means that it was moved from one place to another and can be transported by ice, water, gravity, or wind.
Chemical energy is the kind of energy stored in the bonds formed by atoms and molecules in chemical compounds and elements. This energy is released during a chemical reaction and heat is often given out in the process. These kind of reactions where heat is given out as a by product are called exothermic reactions.
The major factor that determines how much chemical energy a substance has is the mass of that substance. Mass is defined as the amount of matter in a substance.
The higher the mass of a substance, the more concentrated that substance is and subsequently the greater the number of atoms and molecules.
Logically, the higher the number of atoms and molecules then the greater the number of bonds in that substance and subsequently the more the amount of chemical energy stored therein.
Answer:
I think the right answer is c/ number of atomic orbitals