<span>C4H10 + 6.5 O2 ----> 4CO2 + 5H2O
2C4H10 + 13 O2 ----> 8CO2 + 10H2O
1. Count the C on the left (4), put a 4 where the C on the right.
2. Count the H on the left (1), you have two on the right, so you multimply this two by 5. Put the 5 in front of the H2O
3. Count the O on the right. You have 4*2 + 5 = 13. You have two on the left, so you need 6.5 on the left.
4. Now multiply everything on the equation by two so you have nice integer numbers.
5. check you have the same amount of everything on each side.
Example C: left 8, right 8, etc.
I hope this helps. :)</span><span>
</span>
Answer:
a measure of concentration equal to the gram equivalent weight per liter of solution.
Explanation:
Gram equivalent weight is the measure of the reactive capacity of a molecule. The solute's role in the reaction determines the solution's normality. Normality is also known as the equivalent concentration of a solution.
hope it helped
1) Ca-37, with a half-life of 181.1(10) ms.
HF and NaF - If the right concentrations of aqueous solutions are present, they can produce a buffer solution.
<h3>What are buffer solutions and how do they differ?</h3>
- The two main categories of buffers are acidic buffer solutions and alkaline buffer solutions.
- Acidic buffers are solutions that contain a weak acid and one of its salts and have a pH below 7.
- For instance, a buffer solution with a pH of roughly 4.75 is made of acetic acid and sodium acetate.
<h3>Describe buffer solution via an example.</h3>
- When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift.
- A buffer made of a weak acid and its salt is an example.
- It is a solution of acetic acid and sodium acetate CH3COOH + CH3COONa.
learn more about buffer solutions here
<u>brainly.com/question/8676275</u>
#SPJ4
Answer:
N2
Explanation:
Rate of effusion is defined by Graham's Law:
(Rate 1/Rate 2) = (sqrt (M2)/ sqrt (M1))
(Where M is the molar mass of each substance. )
Molar Mass of oxygen, O2, is 32 (M1).
Rate of effusion of O2 to an unknown gas is .935(Rate 1).
Rate 2 is unknown so put 1.
Solve for x (M2).
.935/1 = sqrt x/ sqrt32
.935 x sqrt 32 = sqrt x
5.29 = sq rt x
5.29^2 = 27.975 = 28
N2 has a molar mass of 28 so it is the correct gas.