Answer:
b) Interpreted, organized, or structured data
Step-by-step explanation: from my notes
Answer:
0.30
Step-by-step explanation:
Probability of stopping at first signal = 0.36 ;
P(stop 1) = P(x) = 0.36
Probability of stopping at second signal = 0.54;
P(stop 2) = P(y) = 0.54
Probability of stopping at atleast one of the two signals:
P(x U y) = 0.6
Stopping at both signals :
P(xny) = p(x) + p(y) - p(xUy)
P(xny) = 0.36 + 0.54 - 0.6
P(xny) = 0.3
Stopping at x but not y
P(x n y') = P(x) - P(xny) = 0.36 - 0.3 = 0.06
Stopping at y but not x
P(y n x') = P(y) - P(xny) = 0.54 - 0.3 = 0.24
Probability of stopping at exactly 1 signal :
P(x n y') or P(y n x') = 0.06 + 0.24 = 0.30
Step 1 ) Move all terms right side of the equation.
Step 2 ) Apply quadratic formula. (Note: There are 2 solutions)
,
Step 3 ) Simplify.
,
,
Since the options only provide one of the answer we found, the answer is...
•
•
- <em>Marlon Nunez</em>
Answer:
Step-by-step explanation:
keeping track of family relations can be difficult. If Edna marries your mother’s uncle Charlie, what should you call her? If your father’s cousin’s daughter just had a baby boy, how should you two be introduced? Who is your “great great aunt”, and how can you find your “first cousin twice removed”? Fortunately, a bit of mathematical logic can clarify who should be called what, and why – and even measure the degree of genetic similarity between different relatives.