Answer:
Yes
Explanation:
Denatured ethanol fuel is a polar solvent, which is soluble in water. A
Polar solvent is a compound with a charge separation in chemical bonds, such as alcohol, most acids, or ammonia. These have affinity with water and will dissolve easily. Denatured fuel ethanol has a flash point of -5 ° F and a vapor density of 1.5, indicating that it is heavier than air.
Consequently, ethanol vapors do not rise, similar to the gasoline vapors they are looking for lower altitudes. The specific gravity of denatured fuel ethanol is 0.79, which indicates that it is lighter than water and has a self-ignition temperature of 709 ° F and a boiling point of 165-175 ° F. Like gasoline, the most denatured fuel, the greatest danger of ethanol as an engine fuel component is its flammability.
It has a wider flammable range than gasoline (LEL is 3% and UEL is 19%).
First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
Answer:
33.5 grams of oxygen will be produced
Explanation:
<u>Answer:</u> The atomic mass of these species is different and atomic number remains same.
<u>Explanation:</u>
Isotopes are the chemical species of the same element having different number of neutrons.
- Atomic number is equal to the number of protons or electrons present in that element.
Atomic Number = Number of electrons = Number of protons
- Atomic mass is defined as the sum of number of protons and neutrons contained in an atom.
Atomic Mass = Number of protons + Number of neutrons
For isotopes, as the number of neutrons differ, the atomic mass also differs.
For Example: Carbon has 3 naturally occurring isotopes: . The atomic number remains the same but atomic mass differs.
Hence, for isotopes, the atomic mass of these species is different and atomic number remains same.