Answer:
The atomic number that should be here, 57, is located at the bottom of the table in the row called the Lanthanides. Directly below the space in Row 6, in Row 7, is another empty space, which is filled by a row called the Actinides, also seen at the bottom of the chart.
Explanation:
hope this helps!
Because displacement of water is the convenient way to obtain gas.
Answer:
It has been drawn and uploaded as an attachment. Please download it to see the structure.
Explanation:
The product formed as a result of the reaction of cyclohexene with H2 in presence of Pt (platinum) can be described as catalytic hydrogenation. Catalytic hydrogenation is defined as the process of hydrogen addition in the presence of a catalyst, which in this case is platinum.
Note that Cyclohexene (alkene) is a hydrocarbon molecule represented by the chemical formula, C6H10 .
It consists of a double bond. During the hydrogenation reaction, the alkene undergoes an addition reaction to give alkane which is a saturated hydrocarbon as the product.
The first step in order to derive the product is to draw the chemical structure of cyclohexene and identify the double bond present in it.
The final product can be derived by replacing the double bond with the single bond and satisfying all the valences of the carbon atom. The final product structure has been drawn and uploaded as an attachment. Please download it to see the structure.
Ans:
The structure of the cyclohexane thus, formed has been shown as follows with all the hydrogen atoms:
Answer:
Explanation:
Density is m/V. Also, 1 liter = 1000 . So, we get 0.890/(5*1000) = g/cm^3. You can convert this to kg/m^3 as well by multiplying it by 10. Depends which one you want.
The volume of H₂ evolved at NTP=0.336 L
<h3>Further explanation</h3>
Reaction
Decomposition of NH₃
2NH₃ ⇒ N₂ + 3H₂
conservation mass : mass reactants=mass product
0.28 NH₃= 0.25 N₂ + 0.03 H₂
2 g H₂ = 22.4 L
so for 0.03 g :