Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
C12H22O11 aka carbon, hydrogen, and oxygen
Answer:
1. negative
2. positive
3. neutral
Explanation:
Ok so it looks like they are asking for the charge (positive, negative, or neutral) of each thing
So for 1, it would be negative, because it's pointing to an electron. Electrons always have a negative charge.
So for 2, it would be positive, because it's pointing to a proton. Protons always have a positive charge
So for 3, it would be neutral, because it's pointing to a neutron. Neutrons always have a neutral charge.
Answer:
<h2>The answer you are looking for is (B)</h2>
Explanation:
hope this helps
<h2>please mark as brainliest!!!</h2>
Make sure there are the same number of atoms of each element on either side.
1) Check each one.
2) If one's out of balance, alter the equation to balance it and go back to 1)
3) When everything's balanced, you're finished!
We have 1 Na on the left and 2 Na on the right here. We'll need another NaOH to balance it:
2 NaOH + H₂SO₄ > Na₂SO₄ + H₂O
Now O is out of balance. There's 6 on the left and 5 on the right. We'll need more H₂O:
2 NaOH + H₂SO₄ > Na₂SO₄ + 2 H₂O
Fortunately H is in balance. S is also in balance here, so looks like we did it!
Need any more help?