The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
the total kinetic and potential energy of the ball is constant (mechanical energy remains the same)
Explanation:
As the ball falls, kinetic energy is increased in direct relation with the decrease in potential energy
ΔKE + ΔPE = 0
Answer:
Speed of gamma rays = 3 x 10⁸ m/s
Explanation:
Given:
Frequency of gamma ray = 3 x 10¹⁹ Hz
Wavelength of gamma rays = 1 x 10⁻¹¹ meter
Find:
Speed of gamma rays
Computation:
Velocity = Frequency x wavelength
Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays
Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]
Speed of gamma rays = 3 x [10¹⁹⁻¹¹]
Speed of gamma rays = 3 x [10⁸]
Speed of gamma rays = 3 x 10⁸ m/s
Answer:
25.08m/s
Explanation:
mgh1 + 0.5mv1² = mgh2 + 0.5mv2²
h1 = 0m
v1 = u
h2 = 5m
v2 = 23m/s
putting the values into the formula above;
m(10)(0) + 0.5m(u²) = m(10)(5) + 0.5m(23²)
0 + 0.5mu² = 50m + 264.5m
0.5mu² = 314.5m
dividing through by m
0.5u² = 314.5
u² = 629
u = <u>2</u><u>5</u><u>.</u><u>0</u><u>8</u><u>m</u><u>/</u><u>s</u>
<u>Theref</u><u>ore</u><u>,</u><u> </u><u>the</u><u> </u><u>init</u><u>ial</u><u> </u><u>speed</u><u> </u><u>"</u><u>u</u><u>"</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u>m</u><u>/</u><u>s</u>