Potential energy is in short, stored energy
Answer:
The force exerted on an electron is
Explanation:
Given that,
Charge = 3 μC
Radius a=1 m
Distance = 5 m
We need to calculate the electric field at any point on the axis of a charged ring
Using formula of electric field
Put the value into the formula
Using formula of electric field again
Put the value into the formula
We need to calculate the resultant electric field
Using formula of electric field
Put the value into the formula
We need to calculate the force exerted on an electron
Using formula of electric field
Put the value into the formula
Hence, The force exerted on an electron is
Answer:-2.86*10⁻⁴
Explanation: Use the equation change in volume = (change in pressure * original volume) / Bulks Modulus. ΔV = (-Δp*V₀) / B
Plugging in your numbers, you should get ΔV = (-2.29*10⁷*1) / (8*10¹⁰) = -2.86*10⁻⁴
ΔP = P₂-P₁ ----> ΔP = 2.30*10⁷ - 1.00*10⁵ = 2.29*10⁷
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
B. The apple from the bottom will hit the ground earlier. This is because an increase in height causes an increase in the time that the object will fall, and therefore will affect the final velocity of the falling object. Moreover, the reduction in velocity due to friction from the air should also be considered.