Answer:
Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:
So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by
where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using and solving for , we find the maximum wavelength of the radiation that will eject electrons from the metal:
And since
1 angstrom =
The wavelength in angstroms is
As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf. ... Like low-mass stars, high-mass stars are born in nebulae and evolve and live in the Main Sequence
hydrogen shell burning - outer layers swell. Red Giant Branch - helium ash core compresses - increased hydrogen shell burning. First Dredge Up - expanding atmosphere cools star - stirs carbon, nitrogen and oxygen upward - star heats up.
Answer:
<h3>The answer is 45 J</h3>
Explanation:
The work done by an object can be found by using the formula
<h3>workdone = force × distance</h3>
From the question
distance = 3 meters
force = 15 newtons
We have
workdone = 15 × 3
We have the final answer as
<h3>45 J</h3>
Hope this helps you
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m