Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is
g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
Answer:
5.46 8 x 10²³ molecules.
Explanation:
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole → 6.022 x 10²³ molecules.
9.08 x 10⁻¹ mole → ??? molecules.
∴ The no. of molecules of CO₂ are in 9.08 x 10⁻¹ mol = (6.022 x 10²³ molecules) ( 9.08 x 10⁻¹ mole) / (1.0 mol) = 5.46 8 x 10²³ molecules.
Your answer is 3! Hope you get a good grade :)♥
Answer: Every enzyme has a specific name that can give us insight into the specific reaction that that enzyme can catalyze. We divide them into six different categories.
1) Oxidoreductase - includes two different types of reactions by transferring electrons from either molecule A to B or vice versa. It is involved in oxidizing electrons away from a molecule.
2) Hydrolase - uses water to divide a molecule into two other molecules.
3) Transferase - you move some functional group X from molecule B to molecule A
4) Ligase - catalyzes reactions between two molecules, A and B, that are combining to form a complex between the two. (example: DNA replication)
5) Lyase - divides a molecule into two other molecules without using water and without reducing or oxidation