Answer:
see explanation
Step-by-step explanation:
Check the value of the discriminant
Δ = b² - 4ac
• If b² - 4ac > 0 then roots are real
• If b² - 4ac = 0 roots are real and equal
• If b² - 4ac < 0 then roots are not real
given (x - a)(x - b) = k² ( expand factors )
x² - bx - ax - k² = 0 ( in standard form )
x² + x(- a - b) - k² = 0
with a = 1, b = (- a - b), c = -k²
b² - 4ac = (- a - b)² + 4k²
For a, b, k ∈ R then (- a - b)² ≥ 0 and 4k² ≥ 0
Hence roots of the equation are always real for a, b, k ∈ R
Answer:
f ≤ 1
Step-by-step explanation:
I hope this helps, I got a few people to help me and really only remembered the answer so sorry I can't teach you much but I have the answer
Answer:A. 326.53 is the
Step-by-step explanation: I don't know.
For a better understanding of the answer given here, please go through the diagram in the attached file.
The diagram assumes that the base of the hexagonal pyramid is an exact fit (has same dimensions as the face of the hexagonal prism).
As can be seen from the diagram, the common vertices are A,B,C,D,E,F which are 6 in number.
The bottom vertices are G,H,I,J,K,L, which, again are 6 in number.
The Apex of the pyramid, P is one more vertex.
Thus, the total number of vertices in a Hexagonal pyramid is located on top of a hexagonal prism will be the sum of all these vertices and thus will be:
6+6+1=13