There are 22 bonding parts
A firework exploding is a chemical change as soon as you light the fuse the combustion reacts with the gunpowder.
I hope this helps, good luck!!!!
Answer:
3.8 x 10⁵
Explanation:
For the equilibrium : 3NO(g) ⇌ N2O(g) + NO2(g), the equilibrium constant in the terms of the concentrations of the gases in mol/L is
Kc = (NO) (N2O)/ (NO) ³ where (NO), (N2O) , (NO2) are the concentrations of the gases in mol/L . So
K= (x mol/ 1 L) (x mol/1L) / (7.5 x 10⁻⁶ mol /1 L) ³
x = mol of NO and NO2 at equilibrium
we have that
K = x²/ 7.5 x 10⁻⁶ = 1.9 x 10¹⁶
x = √ (7.5 x 10⁻⁶ x 1.9 x 10¹⁶) = 3.8 x 10⁵
∴ (N2O) = 3.8 x 10⁵
<span>1. Tap water has a small concentration of H+ & OH- ions as well as water molecules, hence there would be permanent dipole-permanent dipole (p.d.-p.d.) forces of attraction between the water molecules (aka H-bonds) as well as ionic bonds between the H+ & OH- ions.
2. Distilled water does not have H+ & OH- ions, hence only H-bonds exist between the water molecules.
3. There are covalent bonds between the individual sugar molecules.
4. There are ionic bonds between the Na+ & Cl- ions in NaCl.
5. There are p.d.-p.d. forces of attraction between the Na+ ions and the O2- partial ions of the water molecules as well as between the Cl- ions and the H+ partial ions of the water molecules. There are also H-bonds between the individual water molecules and ionic bonds between the Na+ & Cl- ions (although these are in much lower abundance than in unsolvated solid NaCl).
6. There are i.d.-i.d. as well as p.d.-p.d. forces of attraction between the sugar molecules and the water molecules. There are also H-bonds between the individual water molecules and covalent bonds within the sugar molecules.</span>