The chemical reaction of Cavendish involving zinc would be a reaction between hydrochloric acid and zinc yielding zinc chloride and hydrogen gas. The balanced chemical equation would be:
2Zn + 2HCl = 2ZnCl + H2
This is an example of a single replacement reaction where zinc replaces hydrogen in the acid molecule.
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Nearly all life on Earth gets its energy from the sun, and the sun gets its energy through the process of nuclear fusion, which is why these type of energy is important to life on Earth.
A Barometer is used to mesure atmosphereic pressure