Answer is: intramolecular attractions are stronger.
Intramolecular attractions are the forces between atoms in molecule.
There are several types of intramolecular forces: covalent bonds, ionic bonds.
Intermolecular forces are the forces between molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0.057 = 5.7 %.
Answer:
D
Excess solar radiation due to a missing magnetic field.
Explanation: Solar proton events (SPEs) are bursts of energetic protons accelerated by the Sun. They occur relatively rarely and can produce extremely high radiation levels. Without thick shielding, SPEs are sufficiently strong to cause acute radiation poisoning and death.
Hope this hels
plz mark brainliest
The balanced equation for the above reaction is;
CH₄ + 2O₂ ---> CO₂ + 2H₂O
Stoichiometry of CH₄ to O₂ is 1:2
The number of methane moles present - 1.44 g/ 16 g/mol = 0.090 mol
Number of oxygen moles present - 9.5 g/ 32 g/mol = 0.30 mol
If methane is the limiting reagent,
0.090 moles of methane react with 0.090x 2 = 0.180 mol
only 0.180 mol of O₂ is required but 0.30 mol of O₂ has been provided therefore O₂ is in excess and CH₄ is the limiting reactant.
Number of moles of water that can be produced - 0.180 mol
Therefore mass of water produced - 0.180 x 18 g/mol = 3.24 g
Therefore mass of 3.24 g of water can be produced
We are given that:
100 mL total solution with 1:50 povidone iodine solution
This means that there is 1 mL of povidone iodine solution
per 50 mL of total solution. Since we are given a total of 100 mL solution,
therefore we have an initial amount of:
pure povidone iodine solution = 2 mL
This amount of pure povidone iodine solution is added or
diluted (most perhaps with water) to make a total of 1000 mL total solution,
therefore the new ratio is:
2:1000 povidone iodine solution
By dividing both sides by 2, this simplifies to
1:500 povidone iodine solution
Answer:
1:500
Answer:
hello? are you still here? reply if you are