Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by .
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).
To find equilibrium number of of vacancies we have find N.
Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole
g/mole
Here =0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,
=2.34×10²⁴ vacancies/ mole
Answer:
a. polar solutes dissolve in polar solvents.
Explanation:
Polarity is a phenomenon that has to do with the positive and negative electric (ionic) charges of a molecule. A molecule with distinct positive and electric charge is said to be POLAR. However, water is said to be a universal solvent because it dissolves more substances than any other solvent can.
This solvent property of water is a function of its POLARITY. Polar solutes dissolve in polar solvents. Hence, only polar solutes can dissolve in water (a polar solvent). Hence, in this case, CH3OCH3 (ether) will dissolve in water because it is a POLAR molecule/solute.
The concentration after dilution is 1.4%.
We are aware that concentration and volume are related to each other by the formula -
= , where we have initial concentration and volume on Left Hand Side and final concentration and volume on Right Hand Side.
Keep the values to calculate final concentration.
= (53.5 × 5.4)/205.0
Performing multiplication on Right and Side
= 288.9/205.0
Performing division on Right Hand Side
= 1.4%
Hence, the final concentration is 1.4%.
Learn more about concentration -
brainly.com/question/17206790
#SPJ4
The complete question is -
A 53.5 mL sample of an 5.4 % (m/v) KBr solution is diluted with water so that the final volume is 205.0 mL.
Calculate the final concentration and express your answer to two significant figures and include the appropriate units.
I’m pretty sure it’s A or C