Answer:
1030 mph
Explanation:
The new velocity equals the initial velocity plus the wind velocity.
First, in the x (east) direction:
vₓ = 335 mph + 711 cos 19° mph
vₓ = 1007 mph
And in the y (north) direction:
vᵧ = 0 mph + 711 sin 19° mph
vᵧ = 231 mph
The net speed can be found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1007 mph)² + (231 mph)²
v ≈ 1030 mph
Answer: False
Explanation: A magnetic compass does not point to the geographic north pole. A magnetic compass points to the earth's magnetic poles, which are not the same as earth's geographic poles. Furthermore, the magnetic pole near earth's geographic north pole is actually the south magnetic pole.
Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:
or
where is the mass of the asteroid, is its distance form earth's center, is the mass of the earth, and is the gravitational constant.
Solving for we get:
putting in numerical values gives
in kilometers this is
Hence, the minimum speed required is 5.7395km/s.
Answer:
More reactant forms.
Explanation:
Given reaction is,
⇒per mole
This is an Exothermic Reaction,(ΔE=-57.3KJper mole)
We know the equilibrium point of all Exothermic reactions moves leftward and more reactant is formed at the equilibrium.
<u>Reason:</u>
As heat is being produced in the reaction the additional heat(57.3KJpermole) can be <u>thought of as a product</u> of the reaction.
So,if you increase the temperature ,you provide heat energy,
(in other words heat energy is given) and hence the concentration of the products increases.
So, with respect to LeChateliers Principle,
As the concentration of products is increased by external means,more of the reactants are produced at the equilibrium of the reaction.
Therefore amount of reactants increases as <u>more reactant forms.</u>
Answer:
Explanation:
The magnitude of the electrostatic force between two charged objects is
where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop: