Answer:c the correct technology cannot support this mission
Explanation:
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
1 mol of any gas or mix of gases at STP conditions will have a volume of 22.4 L. Since the problem doesn’t said what are the conditions I will asume that are STP condition and the volume of one mole of the mix will have a volume of 22.4 L.
You may know that density is
D=m/v
In one mole of air I will have 80% of Nitrogen (N2) and 20% oxygen (O2).
So the mass of one mole of air will be
14 x2x0.80+16x2x0.20 = 22.4 g + 6.4 g = 28.8 g
D= 28.8/22.4 = 1.28 g/L
Of course if the temperature is higher the density will be smaller because the volume of one mole will be bigger and viceversa if the temperature decrease. Also if the pressure is different than one atm the volume of a mol will change.