ANSWER:
What is the measured component of the orbital magnetic dipole moment of an electron with the values
(a) ml=3
(b )
ml= −4
a) -278 x J/T
b) 3.71 x J/T
STEP-BY-STEP EXPLANATION:
a) ml= 3
Цorb,z = ml Цв = - (3) * (9.27e - 24) = -278 x J/T
b) ml= 3
Цorb,z = ml Цв = - (-4) * (9.27e - 24) = 3.71 x J/T
Answer:
Molarity = 0.21 M
Explanation:
Moles <em>solute </em>(mol) = Volume <em>solution</em> (L) x Molarity <em>solution </em>(M)
0.56 mol NaCl = 2.7 L x M
M = 0.2074074074
Answer:
E. All of the above are true.
Explanation:
<em>Which of the following statements is TRUE?</em>
<em>A. State functions do not depend on the path taken to arrive at a particular state.</em> TRUE. State functions like enthalpy (ΔH) and internal energy (ΔE) do not depend on the trajectory, but on the initial and final state.
<em>B. Energy is neither created nor destroyed, excluding nuclear reactions.</em> TRUE. Only in nuclear reactions can energy (E) can be transformed in matter (m) and vice-versa according to Einstein equation: E = m . c² (c is the speed of light).
<em>C. ΔHrx can be determined using constant pressure calorimetry.</em> TRUE. The enthalpy of reaction is the heat involved at constant pressure.
<em>D. ΔErx can be determined using constant volume calorimetry.</em> TRUE. The internal energy of reaction is the heat involved at constant volume.