Answer:
v = 10 m/s
Explanation:
Given that,
Distance covered by a sprinter, d = 100 m
Time taken by him to reach the finish line, t = 10 s
We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,
v = d/t
Hence, his average velocity is 10 m/s.
We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:
where
is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance
In our problem, I=4.00 A and
, so the potential difference is
Answer:
the electroscope separate by the presence of charge carriers
Explanation:
Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where
Fe - Tx = 0
Fe = Tx
In summary, the electroscope separate its leaves by the presence of charge carriers
Answer:
v = 1.98 mph
Explanation:
Given that,
Speed to travel one mile is 100 mph
Speed to travel another mile is 1 mph
The formula used to find your average speed is given by :
Putting the values, we get :
v = 1.98 mph
So, yours average speed is 1.98 mph.
Answer:
The difference between the two is, well for one
Spectrum: The entire range that the "waves" could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
It may confuse you but it makes sense to me (Sorry)
Explanation: