You can solve this problem through dimensional analysis.
First, find the molar mass of NaHCO3.
Na = 22.99 g
H = 1.008 g
C = 12.01 g
O (3) = 16 (3) g
Now, add them all together, you end with with the molar mass of NaHCO3.
22.99 + 1.008 + 12.01 + 16(3) = 84.008 g NaHCO3. This number means that for every mole of NaHCO3, there is 84.008 g NaHCO3. In simpler terms, 1 mole NaHCO3 = 84.008 g NaHCO3.
After finding the molar mass of sodium bicarbonate, now you can use dimensional analysis to solve for the number of moles present in 200. g of sodium bicarbonate.
Cross out the repeating units which are g NaHCO3, and the remaining unit is mole NaHCO3
200. * 1 = 200
200/ 84.008 = 2.38
Notice how there are only 3 sig figs in the answer. This is because the given problem only gave three sig figs.
Your final answer is 2.38 mol NaHCO3.
Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
Where and represents average bond energy in breaking "i" th bond and forming "j" th bond respectively. and are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So,
or,
or,
So bond energy of carbon-fluorine bond is 485 kJ/mol