The answer to this question is 6.25ml
To answer this question, you need to calculate the azithromycin drug doses for this patient. The calculation would be: 25kg * 10mg/kg/d= 250mg/d
Then multiply the doses with the available drug. It would be:
250 mg/d / (200mg/5ml)= 6.25ml/d
To answer this question you need to know how to calculate the molecular weight of a molecule. The compound is having 1 Mg atom and 2 Cl atom, thus the molecular weight should be:
24.305+ 2*35.453= <span>95.211 gram/mol.
Then, the mass of 3 mol of MgCl would be:
3 mol * 95.211 gram/mol= 285.633 gram</span>
Answer:
[Kr] 4d10 5s2 5p4
Explanation:
The Symbol I represents Iodine. It has atomic number of 53. The full electronic configuration is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5
However the question requested for the configuration of I+.
I+ is a cation and it simply refers to an iodine atom that has lost a single electron. The electronic configuration of I+ is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4
Using Noble gas shorthand representation, we have;
[Kr] 4d10 5s2 5p4
First take all percents and make them grams. Since you're not given a overall molar mass you can assume it is 100 and therefore the percents are their masses.
So you have 14.31g Carbon, 1.2g Hydrogen, and 84.49g of Chlorine. Next you divide each by their molar masses to get moles of each.
Carbon= <u>14.31</u>g Hydrogen= <u>1.2</u>g Chlorine= <u>85.49</u>g
12.01g 1.01g 35.45g
= 1.19moles = 1.188moles = 2.411moles
Next you divide each of those numbers by the smallest, in this case, Hydrogen.
Thus,
Carbon= <u>1.19moles</u> Hydrogen= <u>1.188moles</u> Chlorine= <u>2.411moles</u>
1.188moles 1.188moles 1.188moles
=1.002 =1 =2.02
These are all close enough to round, so your final empirical formula is: CHCl2
Hope that helps!!
The answer is (2) gains 12 moles of electrons. In every chemical reaction, the electrons will not be destroyed or created, it will only transfer. So the Al loses electrons, the oxygen needs to gain the same amount of electrons.