Answer:
Red
Explanation:
Red is a colour which has the lowest frequency. Violet has the highest frequency. Frequency has a direct relationship with energy. This means the higher the frequency, the higher the energy. Red has the lowest energy of all the colors too.
The frequency and Energy has an inverse relationship with the wavelength.
However Red has the longest wavelength of about 620 - 780 nanometer.
Vf^2 = Vi^2 + 2ad
a= 34 m/s^2
Vi = 0 m/s
d = 3400m
Vf = 480.83 m/s
a=v/t
t=v/a
t=480.83/34
t=14.142 s
mass of iron block given as
density of iron block is
now the volume of the iron piece is given as
Now when this iron block is complete submerged in oil inside the beaker the buoyancy force on the iron block will be given as
here we know that
= density of liquid = 916 kg/m^3
Now for the reading of spring balance we can say the spring force and buoyancy force on the block will counter balance the weight of the block at equilibrium
So reading of spring balance will be 16.45 N
Now for other scale which will read the normal force of the surface we can write that normal force on the container will balance weight of liquid + container and buoyancy force on block
So the other scale will read 36.47 N
Answer:
2.64 x 10⁻⁶T
Explanation:
The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;
B = (μ₀ I) / (2π r) ----------------(i)
B is magnetic field
I is current through the wire
r is the distance from the wire
μ₀ is the magnetic constant = 4π x 10⁻⁷Hm⁻¹
From the question;
I = 0.7A
r = 0.053m
Substitute these values into equation (i) as follows;
B = (4π x 10⁻⁷ x 0.7) / (2π x 0.053)
B = 2.64 x 10⁻⁶T
Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:
Before the collision, the piñata is not moving, so .
After the collision, the stick stops, so .
Rearraging, we have:
Substituting:
0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.