The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>
Answer:
c. find the slope of the velocity time graph
Answer:
m≈501.57 g
Explanation:
The density formula is:
d=m/v
Let’s rearrange the formula for m. m is being divided by v. The inverse of division is multiplication, so multiply both aides by v.
d*v= m/v*v
d*v=m
The mass can be found by multiply the density and the volume.
m=d*v
The density is 1.06 grams per milliliter and the volume is 473.176 milliliters.
d= 1.06 g/mL
v= 473.176 mL
Substitute the values into the formula.
m= 1.06 g/mL * 473.176 mL
Multiply. When multiplying, the mL will cancel out.
m= 501.56656 g
Let’s round to the nearest hundredth. The 6 in the thousandth place tells us to round the 6 to a 7 in the hundredth place.
m ≈501.57 g
The mass is about 501.57 grams.
Answer:
Explanation:
Change in velocity considering the x component will be
Final velocity-Initial velocity
Change in velocity considering the y component will be
Final velocity-Initial velocity
Resultant change in velocity
Acceleration= change in velocity per unit time hence