We need to increase the concentration of common ion first, in order to promote the common ion effect
<h3>What is the Common ion effect?</h3>
It is an effect that suppresses the dissociation of salt due to the addition of another salt having common ions.
For example, a saturated solution of silver chloride in equilibrium has Ag⁺ and Cl⁻ . Sodium Chloride is added to the solution and has a common ion Cl⁻. As a result, the equilibrium shifts to the left to form more silver chloride. Thus, solubility of AgCl decreases.
The Equilibrium law states that if a process is in equilibrium and is subjected to a change
- in temperature,
- pressure,
- the concentration of reactant or product,
then the equilibrium shifts in a particular direction, according to the condition.
Thus, an increase in the concentration of common ion promotes the common ion effect.
Learn more about common ion effect:
brainly.com/question/23684003
#SPJ4
When calcium reacts with water, the temperature changes from 18c to 39c is an exothermic reaction as energy is releasing and increasing the temperature.
<h3>What is an exothermic reaction?</h3>
Exothermic reaction are those reactions in which energy is released when a reaction completes.
An example is burning of wood.
Thus, when calcium reacts with water, the temperature changes from 18c to 39c is an exothermic reaction as energy is releasing and increasing the temperature.
Learn more about exothermic reaction
brainly.com/question/10373907
#SPJ4
Answer:
True
Explanation:
I did the test and got 100
Answer:
The fungus has grown larger
Explanation:
Because where the orange is in the fridge and even normally you out oranges on the counter or in a bowl, where it's in the fridge it got old faster.
Answer:
1. V2.
2. 299K.
3. 451K
4. 0.25 x 451 = V2 x 299
Explanation:
1. The data obtained from the question include:
Initial volume (V1) = 0.25mL
Initial temperature (T1) = 26°C
Final temperature (T2) = 178°C
Final volume (V2) =.?
2. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K
3. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Final temperature (T2) = 178°C
Final temperature (T1) = 178°C + 273 = 451K
4. Initial volume (V1) = 0.25mL
Initial temperature (T1) = 299K
Final temperature (T2) = 451K
Final volume (V2) =.?
V1 x T2 = V2 x T1
0.25 x 451 = V2 x 299