Air moves when the molecules are free meaning they aren't close up to each other or trying to fill up space, they are moving freely.
Answer:
3.60 mol CO₂
Explanation:
Balanced chemical reaction:
2CO + O₂ ⇒ 2CO₂
The molar ratio between CO₂ and CO is 1:1
2CO₂/2CO = CO₂/CO
Thus, the moles of CO₂ produced from 3.60 moles of CO is 3.60 moles:
(3.60 mol CO)(CO₂/CO) = 3.60 mol CO₂
Answer:
dipole-dipole forces, ion-dipole forces, higher molar mass, hydrogen bonding, stronger intermolecular forces
Explanation:
<em>1. H₂S and H₂Se exhibit the following intermolecular forces: </em><em>dipole-dipole forces </em><em>and </em><em>ion-dipole forces</em><em>.</em> These molecules have a bent geometry, thus, a dipolar moment which makes them dipoles. When they are in the aqueous form they are weak electrolytes whose ions interact with the water dipoles
<em>2. Therefore, when comparing H₂S and H₂Se the one with a </em><em>higher molar mass</em><em> has a higher boiling point.</em> In this case, H₂Se has a higher boiling point than H₂S due to its higher molar mass.
<em>3. The strongest intermolecular force exhibited by H₂O is </em><em>hydrogen bonding</em><em>. </em>This is a specially strong dipole-dipole interaction in which the positive density charge on the hydrogens is attracted to the negative density charge on the oxygen.
<em>4. Therefore, when comparing H₂Se and H₂O the one with </em><em>stronger intermolecular forces</em><em> has a higher boiling point. </em>That's why the boiling point of H₂O is much higher than the boiling point of H₂Se.
This indicates that the molecules and attractive force of glycerol is stronger then that of water