1. Kinetic
He makes the ball move by kicking it, which increases the kinetic energy
Weight of the carriage
Normal force
Frictional force
Acceleration
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)
To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with , force of acting vertically downward.Both are downward and Normal is upward so Normal force
- Normal force (N)
- Frictional force (f)
To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that and component of forces.
So Fnet = Fy(Horizontal) - f(friction)
- Acceleration (a) =
So we have the weight of the carriage, normal force,frictional force and acceleration.
The battery will be full still a 8v bc of no time comparison
Answer:
F = 4.47 10⁻⁶ N
Explanation:
The expression they give for the strength of the tide is
F = 2 G m M a / r³
Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg
They ask us to perform the calculation
F = 2 6.67 10⁻¹¹ 135 5.98 10²⁴ 13 / (6.79 10⁶)³
F = 4.47 10⁻⁶ N
This force is directed in the single line at the astronaut's mass centers and the space station