Answer:
File doesn't appear, can't help you without enough infomation.
Step-by-step explanation:
Answer:
Correct integral, third graph
Step-by-step explanation:
Assuming that your answer was 'tan³(θ)/3 + C,' you have the right integral. We would have to solve for the integral using u-substitution. Let's start.
Given : ∫ tan²(θ)sec²(θ)dθ
Applying u-substitution : u = tan(θ),
=> ∫ u²du
Apply the power rule ' ∫ xᵃdx = x^(a+1)/a+1 ' : u^(2+1)/ 2+1
Substitute back u = tan(θ) : tan^2+1(θ)/2+1
Simplify : 1/3tan³(θ)
Hence the integral ' ∫ tan²(θ)sec²(θ)dθ ' = ' 1/3tan³(θ). ' Your solution was rewritten in a different format, but it was the same answer. Now let's move on to the graphing portion. The attachment represents F(θ). f(θ) is an upward facing parabola, so your graph will be the third one.
It looks like your equations are
7M - 2t = -30
5t - 12M = 115
<u>Solving by substitution</u>
Solve either equation for one variable. For example,
7M - 2t = -30 ⇒ t = (7M + 30)/2
Substitute this into the other equation and solve for M.
5 × (7M + 30)/2 - 12M = 115
5 (7M + 30) - 24M = 230
35M + 150 - 24M = 230
11M = 80
M = 80/11
Now solve for t.
t = (7 × (80/11) + 30)/2
t = (560/11 + 30)/2
t = (890/11)/2
t = 445/11
<u>Solving by elimination</u>
Multiply both equations by an appropriate factor to make the coefficients of one of the variables sum to zero. For example,
7M - 2t = -30 ⇒ -10t + 35M = -150 … (multiply by 5)
5t - 12M = 115 ⇒ 10t - 24M = 230 … (multiply by 2)
Now combining the equations eliminates the t terms, and
(-10t + 35M) + (10t - 24M) = -150 + 230
11M = 80
M = 80/11
It follows that
7 × (80/11) - 2t = -30
560/11 - 2t = -30
2t = 890/11
t = 445/11
answer is attached below with full explanation