Answer:
The value of the carbon bond angles are 109.5 °
Explanation:
CH3CH2CH2OH = propanol . This is an alcohol.
All bonds here are single bonds.
Single bonds are sp³- hybdridization type. To be sp3 hybridized, it has an s orbital and three p orbitals : sp³. This refers to the mixing character of one 2s-orbital and three 2p-orbitals. This will create four hybrid orbitals with similar characteristics.
Sp3- types have angles of 109.5 ° between the carbon - atoms.
This means that the value of the carbon bond angles are 109.5 °
A chemical structure of a molecule includes the arrangement of atoms and the chemical bonds that hold the atoms together. The 2-HEPTANONE molecule contains a total of 21 bond(s) There are 7 non-H bond(s), 1 multiple bond(s), 4 rotatable bond(s), 1 double bond(s) and 1 ketone(s) (aliphatic).
Answer : The molecule is a polar molecule.
Explanation :
Polar molecule : When the arrangement of the molecule is asymmetrical then the molecule is polar.
Non-polar molecule : When the arrangement of the molecule is symmetrical then the molecule is non-polar.
The given molecule is,
The electronegativities of oxygen and fluorine are different. The molecular geometry of is bent. As, Fluorine is more elctronegative than the oxygen. So, the arrows putting towards the more electronegative element i.e, fluorine. These arrows do not balance each other. Due to this, the asymmetrical arrangement of these bonds makes the molecule polar.
Hence, the given molecule is polar.
Answer:
No net change in reaction occurs in this nucleophilic acyl subtitution reaction
Explanation:
Sodium ethoxide in ethanol gives nucleophilic acyl substitution reaction with ethyl-2-methylpropanoate.
Here ethoxide group replaces an ethoxide group from ester through addition-ellimination pathway.
So, ultimately, the product of this reaction is identical with reactant i.e. ethyl-2-methylpropanoate is reproduced.
Hence one might observe no change during reaction as product and reactant of this reaction are same.
Mechanistic pathway has been shown below.
Answer:
The correct answer to the question is
The standard heat of reaction for the reaction is
a. 216.8 kJ released per mole
Explanation:
The heat of reaction is given by [Heat of formation of products] - [Heat of formation of reactants]
In the question we have, heat of formation of the products Zn+2 (aq) = -152.4 kJ/mole and the heat of formation of the reactants = 64.4 kJ/mole
Therefore, the heat of formation of the reaction = (-152-64.4) kJ/mole or
-216.8 kJ/mole released