Electron Cloud and nuclei
Answer:
The Anatomy of a Lens
Refraction by Lenses
Image Formation Revisited
Converging Lenses - Ray Diagrams
Converging Lenses - Object-Image Relations
Diverging Lenses - Ray Diagrams
Diverging Lenses - Object-Image Relations
The Mathematics of Lenses
Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)
Answer:
Explanation:
In case of rotational motion, every particle is rotated with a same angular velocity .
The relation between linear velocity and angular velocity is
V = r w
Where v is linear velocity, r is the radius of circular path and w be the angular velocity.
Here w is same for all the particles but every particle has different radius of circular path I which they are rotating, so linear velocity is differnet for all.
Answer:
B) Absorbed energy results in the change in potential energy.
Explanation:
i got it wrong on usatestpreo